Neighborhood Mixture Model for Knowledge Base Completion
نویسندگان
چکیده
Knowledge bases are useful resources for many natural language processing tasks, however, they are far from complete. In this paper, we define a novel entity representation as a mixture of its neighborhood in the knowledge base and apply this technique on TransE—a well-known embedding model for knowledge base completion. Experimental results show that the neighborhood information significantly helps to improve the results of the TransE, leading to better performance than obtained by other state-of-the-art embedding models on three benchmark datasets for triple classification, entity prediction and relation prediction tasks.
منابع مشابه
Neuron Mathematical Model Representation of Neural Tensor Network for RDF Knowledge Base Completion
In this paper, a state-of-the-art neuron mathematical model of neural tensor network (NTN) is proposed to RDF knowledge base completion problem. One of the difficulties with the parameter of the network is that representation of its neuron mathematical model is not possible. For this reason, a new representation of this network is suggested that solves this difficulty. In the representation, th...
متن کاملAn Interpretable Knowledge Transfer Model for Knowledge Base Completion
Knowledge bases are important resources for a variety of natural language processing tasks but suffer from incompleteness. We propose a novel embedding model, ITransF, to perform knowledge base completion. Equipped with a sparse attention mechanism, ITransF discovers hidden concepts of relations and transfer statistical strength through the sharing of concepts. Moreover, the learned association...
متن کاملImproved Knowledge Base Completion by the Path-Augmented TransR Model
Knowledge base completion aims to infer new relations from existing information. In this paper, we propose path-augmented TransR (PTransR) model to improve the accuracy of link prediction. In our approach, we base PTransR model on TransR, which is the best one-hop model at present. Then we regularize TransR with information of relation paths. In our experiment, we evaluate PTransR on the task o...
متن کاملNeighborhood Systems and Approximation in Relational Databases and Knowledge Bases
In solving mathematical equations, it is often sufficient to find approximate solutions; in answering database queries, very often the situation is similar. To formulate the notion of approximation, the neighborhood system or topology is introduced into the relational model called topological data model. Moreover, when a knowledge base is derived from a database, a neighborhood system can also ...
متن کاملA neighborhood relevance model for entity linking
Entity Linking is the task of mapping mentions in documents to entities in a knowledge base. One of the crucial tasks is to identify the disambiguating context of the mention, and joint assignment models leverage the relationships within the knowledge base. We demonstrate how joint assignment models can be approximated with information retrieval. We build on pseudo-relevance feedback and use th...
متن کامل